Archive for November 2013

Body Condition Scoring

Body condition is a visual and subjective assessment which comes naturally to stockmen/women. Good body condition is achieved by a combination of the nutritional program, management and the environment. With ostrich, there remains a lack of experience on how to fully recognise a healthy body condition.

The subject of Body Condition Scoring (BSC) was referenced in Ostrich at a conference in Hengelo in 1996 or 1997.  Whilst body condition scoring is an excellent guide, the problem at the time was that experience in ostrich was still limited and therefore it was not possible to set any meaningful standards.

Breeder condition will change during the breeder season.  The aim of the off season is to rebuild their body reserves so they start the breeder season in top condition.   Figure 1 is an illustration of body condition scoring for Dairy Cattle.  These illustrations are taken from Pennsylvania State University web page, but there are many examples available.

Dairy cattle BSC

Figure 1: Dairy Cattle Body Condition Scoring

Figure 2 is a similar photo of comparative ostrich hens.  Comparing these two hens, it is clear which bird will have the resources to withstand a productive breeder season.  The hen on the left was fed a ration that was mainly grain based, with limited vitamins and minerals and some straw.  The hen on the right received rations that are of high nutrient value that included alfalfa, maize, soyameal with high levels of supplemented vitamins and minerals.

comparative ostrich hens

Figure 2: Comparative Ostrich Hens

The condition of ostrich of any age should be evaluated using the normal criteria of judging good health of which body condition is just one component. It is important to understand the difference in a bird in good condition with plenty of muscle as opposed to a bird that is carrying too much fat.  Signs to look for with ostrich are such as things as:

  • General Alertness:  At all ages the birds should look bright and alert.  Ostrich are extremely good at camouflaging poor health so as not to alert predators.
  • Bright Eyes
  • Good Health
  • Glossy Feathers
  • Good feather Cover:  Free from feather pecking but some mating wear is normal during the breeding season
  • Rounded well-muscled body
  • Well-muscled thighs
  • Strong legs
  • Freedom from any defects: e.g: bowed legs, twisted legs
  • Good appetite

    quality chicks

    Figure 3: Quality Chicks

Apart from visual inspection, the way to physically assess the body condition of ostrich:

Quote: When the backbone at the highest place on the bird’s back is protruding above the surrounding flesh, the bird is too thin. When the backbone at the highest place on the bird’s back is indented below the surrounding flesh, the bird is too fat and needs decreased feed—or a different feed formulation.  The optimum Body Condition is when the backbone at the highest point on their back is perfectly even with the surrounding flesh End Quote [1]

---------

[1] Daryl Holle Body Condition is Most Important

AGM 2013 Minutes

The Minutes of the Annual General Meeting are now available to members here.  Please note you will to log on to access.

Annual General Meeting 2013

The 11th Annual General meeting of the World Ostrich Association will take place on 22nd November at 20.00pm GMT (UK Time) at 33 Eden Grange, Little Corby, Carlisle, England. The meeting will take place on line through Skype and open to all members.  The agenda and full meeting details are only available to all members. Members can access the agenda and full details on how to attend here.  Access to this page requires you to login with your membership username and password.

Genetic Improvement by Natural Selection

Over the years the WOA directors have emphasised the important role of improving the genetic stock as one of the management factors to achieving improved commercial levels of production.  Recently we received a comment that those interested in ostrich farming should shy away from such terms as "genetic improvement programs".   The reason put forward was fear that our consumers may believe we are going down the same track as companies such as Monsanto with their approach to genetic modification (GM).

In the current environment of increasing consumer concerns of GM it is important to be very clear about how the modern GM technology is so very different to “genetic selection by natural selection”.   For millenniums agriculture has improved farm output with farmers selecting seeds from their best crops and selecting breeding males and females from their best livestock genetic lines.  This process has improved agricultural production since the start of agriculture some 10,000 years ago.   As discussed here genetic selection this way has also changed the confirmation of breeds to meet the modern market demands.  Figure 1, from that newsletter illustrates how the Aberdeen Angus has changed from 1959 to 2006.

In livestock genetic improvement by natural selection is achieved by selecting the animals demonstrating the best traits for their breed, or specie, to use for future breeders to improve the breed for their productive traits.  In ostrich these productive traits may be egg laying, they may be specific conformation that provides optimum muscle size for meat production; they will include optimum growth size and feed conversion. In the wild it is the survival of the fittest.

With plants this natural method of genetic improvement is achieved by saving seeds from the best crops to produce a quality crop with optimum yield under the local climatic conditions.

Genetic improvement by natural selection introduces only the genes from the same species, they may be crossed with different breeds or varieties of the same species but they do not introduce genes from different species.  For example in cattle you may cross a Fresian Dairy Cow with a Hereford to achieve a calf that will yield more meat when no further heifers are required to replace older members of the herd.

In recent years something new has crept into genetic development that is alien to genetic improvement by natural selection.  That is genetic engineering where DNA from different species is impregnated into a plant or animals.  The simplest definition of a genetically modified organism is one in which the genetic make-up has been altered in a way that does not happen naturally. The genes, DNA have crossed the specie barrier.

An example of Genetic Modification is taking the gene that programs poison in the tail of a scorpion, and combining it with a cabbage.  These genetically modified cabbages kill caterpillars because they have learned to grow scorpion poison (insecticide) in their sap.  Another example is the gene from a fish that lives in very cold seas has been inserted into a strawberry, allowing the fruit to be frost-tolerant. The item with the greatest concern is the impregnation of DNA into crops such as soya and maize to make it resistant to the herbicide roundup.

The two types of genetic improvement must never be confused.  Genetic improvement by natural selection is normal and essential in commercial agriculture and quite natural so long as the traits selected for and developed do not compromise the animal’s health and well-being.  The controversy on the safety and ethics of genetic improvement is the Genetic Engineering/modification introduction of genes from different species as many scientists still question their long term safety.

An excellent video “The World According to Monsanto” put together by Marie-Monique Robin examines the science supporting the evidence of the safety of GM crops and their development.   At minutes 47.44, during a discussion with Steve Druker reviewing FDA documentation highlighted this statement written by Dr. Louis J Prybal from the FDA Microbiology department:

“there is a profound difference between the types of unexpected effects from traditional breeding and genetic engineering”

The commercial success of ostrich farming depends on identifying the productive genetic material and developing those bloodlines using natural selection and breeding techniques, which can include Artificial Insemination.   There is no need or place for GM technology in ostrich genetic improvement.